👤

Obtenez des conseils d'experts et des connaissances communautaires sur FRstudy.me. Posez n'importe quelle question et recevez des réponses bien informées de la part de notre communauté de professionnels expérimentés.

Bonjour pouvez vous m'aider, s'il vous plait

n étant un entier naturel. On donne A = 4 puissance n+1 + 4 puissance n / (2 puissance n) au carré

1.Calculer A pour n = 0 ; n = 2 ; puis n = 5. Que peut-on conjecturer ?

2.Vérifier l’égalité 4n × 4 = 4n+1 et démontrer la conjecture faite à la question 1.


Sagot :

Bonjour,

[tex]A = \frac{4 {}^{n + 1} + 4 {}^{n} }{(2 {}^{n} ) {}^{2} } [/tex]

Pour n = 0

A = (4¹ + 1 )/(1)² = 5

pour n = 2

A =( 4³ + 4²)/(2²)² = 5

pour n = 5

A = (4⁶ + 4⁵)/(2⁵)² = 5

On peut conjecturer que A = 5 peut importe la valeur de n

[tex]A = \frac{4 {}^{n + 1} + 4 {}^{n} }{(2 {}^{n} ) {}^{2} } = \frac{4 {}^{n + 1} + 4 {}^{n}}{4 {}^{n} } = \frac{4 {}^{n + 1} }{4 {}^{n} } + \frac{4 {}^{n} }{4 {}^{n} } = 4 + 1 = 5[/tex]

La conjoncture est démontrée