👤

FRstudy.me propose un mélange unique de réponses expertes et de connaissances communautaires. Notre plateforme offre des réponses fiables et complètes pour vous aider à prendre des décisions éclairées rapidement et facilement.

bonsoir pouvez vous m aider merci



Bonsoir Pouvez Vous M Aider Merci class=

Sagot :

J'ai essayé et j'espère t'avoir t'aider.

 

Voila ce que j ai trouvé :
1. a. A= 3x²-18x+27
A=3x²-3*6x+9*3
A= 3(x²-6x+9)

b. x²-6x+9
=x²-2*x*3+3²
= (x-3)²

A=3x²-18x+27
A= 3*(x-3)²

 

B=4x²-100
=4x²-4*25
=4(x²-25)


C=(x-1)(x+1)²-8(x+1)
C= (x-1)(x+1)(x+1)-8(x+1)
C=(x+1)(((x-1)(x+1))-8)
C=(x+1)((x*x+x*1-1*x-1*1)-8)
C= (x+1)((x²+x-x-1)-8)
C=(x+1)(x²-9)

D=4x²(x-1)-32x(x-1)+64(x-1)
D=(x-1)((2x)²-2*2x*8+8²)
D=(x-1)(2x-8)²

Xxx102

Bonsoir,

 

Pour le A :

a)

[tex]3(x^2-6x+9)[/tex]

b)

On remarque que l'expression [tex]x^2-6x+9[/tex] correspond à l'identité remarquable [tex]a^2-2ab+b^2 = (a-b)^2[/tex] avec a=x et b=3.

 

 

Pour le B :

Essaie de repérer l'identité remarquable :

[tex]a^2-b^2 = (a+b)(a-b)[/tex]

 

Pour le C : Commence par factoriser par (x+1). Ensuite, tu obtiens [tex](x-1)\left[(x-1)(x+1)-8\right][/tex]. Développe et re-factorise ce qui est entre crochets.

 

Pour le D : Factorise par 4(x-1) puis identité remarquable.

Votre engagement est important pour nous. Continuez à partager vos connaissances et vos expériences. Créons un environnement d'apprentissage agréable et bénéfique pour tous. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses actualisées.