👤

Rejoignez la communauté FRstudy.me et obtenez les réponses dont vous avez besoin. Posez n'importe quelle question et recevez des réponses bien informées de notre communauté de professionnels expérimentés.

Bonjour, je n’arrive pas à résoudre cet exercice, pouvez-vous m’aider ?

Bonjour Je Narrive Pas À Résoudre Cet Exercice Pouvezvous Maider class=

Sagot :

Réponse :

f(x) = (- x² + 4 x - 7)/(x - 1)   définie  sur  Df = ]- ∞ ; 1[U]1 ; + ∞[

1) Montrer que, pour tout  x ∈ Df ,   f (x) = - x + 3  - 4/(x - 1)

f(x) = (- x² + 4 x - 7)/(x - 1)

      = ( - x² + x + 3 x  - 3 - 4)/(x - 1)

      = ( - x(x - 1) + 3(x - 1) - 4)/(x - 1)

      = (- x(x - 1) + 3(x - 1))/(x - 1)  - 4/(x - 1)

      = (x - 1)(- x + 3)/(x - 1)  - 4/(x - 1)

   f(x) = - x + 3  -  4/(x - 1)    

2) (Δ) est la droite d'équation  y = - x + 3. Etudier la position relative de Cf et  (Δ)

il faut étudier le signe de f(x) - y

f(x) - y = - x + 3 - 4/(x - 1) - (- x + 3) = - 4/(x - 1)

           x              - ∞                           1                            + ∞

         - 4                                -            ||               -

        x - 1                               -            ||               +

     f(x) - y                               +           ||               -

position relative      Cf est au-dessus       Cf est en dessous

de C f et (Δ)                 de (Δ)                            de (Δ)

3) Montrer que, pour tout x ∈ Df ,   f '(x) = - (x + 1)(x - 3)/(x - 1)²

    f(x) = - x + 3  - 4/(x - 1)

f est une fonction quotient dérivable sur Df  et sa dérivée est f '

f '(x) = - 1 + 4/(x - 1)²

       = (- (x - 1)² + 4)/(x - 1)²

       = - ((x - 1)² - 4)/(x - 1)²

       = - (x - 1 + 2)(x - 1 - 2)/(x - 1)²

f '(x) = - (x + 1)(x - 3)/(x - 1)²        

4) étudier le signe de f '(x) en fonction de  x ∈ Df

    puis dresser le tableau de variations de f sur Df

f '(x) = - (x + 1)(x - 3)/(x - 1)²         (x - 1)² > 0

donc le signe de f '(x) dépend du signe de - (x + 1)(x - 3)

      x     - ∞                           - 1                            3                      + ∞            

   f '(x)                     -               0              +            0            -

tableau de variations

       x   - ∞                      - 1                       1                     3                    + ∞                    

    f(x)   + ∞ →→→→→→→→→   6 →→→→→→→+∞ ||-∞→→→→→→  - 2→→→→→→→→ - ∞

                décroissante        croissante      croissante      décroissante

5) déterminer une équation de la tangente à Cf au point d'abscisse 2

        y = f(2) + f '(2)(x - 2)

f(2) = - 2+3 - 4/(2- 1)  = - 3

f '(2) = - (2 + 1)(2 - 3)/(2-1)² = 3

y = - 3 + 3(x - 2)  = 3 x - 9

6) peut-on trouver une tangente à Cf de coefficient directeur égal à - 1 ?

Justifier

 f '(x) = - 1  ⇔ - (x + 1)(x - 3)/(x - 1)² = - 1  ⇔ - (x+1)(x - 3) + (x - 1)² = 0

⇔ - (x² - 2 x - 3) + x² - 2 x + 1 = 0  ⇔ - x² + 2 x + 3 + x² - 2 x + 1 = 0    

or 4 ≠ 0  donc on ne pas trouver une tangente à Cf de coefficient directeur - 1

Explications étape par étape :