Obtenez des réponses personnalisées à vos questions sur FRstudy.me. Obtenez des réponses rapides et précises à vos questions grâce à notre communauté d'experts toujours prêts à vous aider.
Sagot :
Bonjour,
Soit x réel nous savons que
[tex]cos^2x+sin^2x=1\\\\sin^2x=1-cos^2x\\\\[/tex]
Ainsi l'équation devient
[tex]sin^4x+cos^4x=(1-cos^2x)^2+cos^4x=\dfrac{5}{8}\\\\2cos^4x-2cos^2x+1=\dfrac{5}{8}\\\\cos^4x-cos^2x+\dfrac{3}{16}=0\\\\(cos^2x-\dfrac1{2})^2-\dfrac1{4}+\dfrac{3}{16}=0\\\\(cos^2x-\dfrac1{2})^2=\dfrac1{16}\\\\cos^2x=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{3}{4}\\\\cosx=\dfrac{\sqrt{3}}{2} \ ou \ cosx=-\dfrac{\sqrt{3}}{2}[/tex]
ou
[tex]cos^2x=\dfrac{1}{2}-\dfrac{1}{4}=\dfrac{1}{4}\\\\cosx=\dfrac1{2} \ \ ou \ \ cosx=-\dfrac1{2}[/tex]
ce qui donne
[tex]x=\dfrac{\pi}{6} \ \ [\pi]\\\\ou\\\\x=-\dfrac{\pi}{6}\ \ [\pi][/tex]
ou
[tex]x=\dfrac{\pi}{3} \ \ [\pi]\\\\ou\\\\x=-\dfrac{\pi}{3}\ \ [\pi][/tex]
Merci
Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Nous espérons que vous avez trouvé ce que vous cherchiez sur FRstudy.me. Revenez pour plus de solutions!