👤

Rejoignez FRstudy.me et commencez à obtenir les réponses dont vous avez besoin. Posez vos questions et recevez des réponses fiables et détaillées de notre communauté d'experts dévoués.

Svp je suis complètement perdu merci de m'expliquer comment résoudre lexo

Svp Je Suis Complètement Perdu Merci De Mexpliquer Comment Résoudre Lexo class=

Sagot :

OzYta

Bonjour,

Soit [tex]f[/tex] la fonction définie sur [tex]$\mathbb{R}[/tex] par [tex]f(x)=(x^{2} -2,5x+1)e^{x}[/tex].

1) Pour tout réel [tex]x[/tex], la fonction dérivée de [tex]f[/tex] est :

[tex]f'(x)=(x^{2} -2,5x+1)'(e^{x})+(x^{2} -2,5x+1)(e^{x})'\\\\f'(x)=(2x-2,5\times1 +0)e^{x}+(x^{2} -2,5x+1)e^{x}\\\\f'(x)=(2x-2,5)e^{x}+(x^{2} -2,5x+1)e^{x}\\\\f'(x)=(2x-2,5+x^{2} -2,5x+1)e^{x}\\\\f'(x)=(x^{2} -0,5x-1,5)e^{x}[/tex]

2) Etudions le signe de la dérivée.

  • La fonction exponentielle est strictement positive sur [tex]$\mathbb{R}[/tex], donc pour tout réel [tex]x[/tex], on a [tex]e^{x} > 0[/tex].
  • On étudie alors le signe de [tex]x^{2} -0,5x-1,5[/tex], sachant que c'est un polynôme du second degré.

Or, [tex]\Delta=(-0,5)^{2}-4\times 1\times (-1,5)=6,25[/tex]

Donc : [tex]\sqrt{\Delta} =\sqrt{6,25}=2,5[/tex]

Comme [tex]\Delta=6,25 > 0[/tex], ce polynôme possède deux racines distinctes :

[tex]x_{1}=\dfrac{0,5-2,5}{2} =\dfrac{-2}{2} =-1 \\\\\\x_{2}=\dfrac{0,5+2,5}{2} =\dfrac{3}{2} =1,5[/tex]

Ainsi, [tex]x^{2} -0,5x-1,5[/tex] est du signe de [tex]a=1[/tex], c'est-à-dire positif à l'extérieur des racines, donc sur l'intervalle [tex]]-\infty;-1]\cup[1,5;+\infty[[/tex] et du signe de [tex]a=-1[/tex], c'est-à-dire négatif à l'intérieur des racines, donc sur l'intervalle [tex][-1;1,5][/tex].

Par conséquent :

  • [tex]f'(x) > 0[/tex] sur [tex]]-\infty;-1]\cup[1,5;+\infty[[/tex]
  • [tex]f'(x) < 0[/tex] sur [tex][-1;1,5][/tex]
  • [tex]f'(x)=0[/tex] si [tex]x[/tex] ∈ [tex]\{-1;1,5\}[/tex]

On en déduit les variations de la fonction [tex]f[/tex] :

- Sur l'intervalle [tex]]-\infty;-1]\cup[1,5;+\infty[[/tex], la fonction [tex]f[/tex] est croissante.

- Sur l'intervalle [tex][-1;1,5][/tex], la fonction [tex]f[/tex] est décroissante.

Cette étude se résume dans le tableau de variations de [tex]f[/tex] :

Valeurs de [tex]x[/tex]     -∞                       -1                           1,5                          +∞                

Signe de [tex]f'(x)[/tex]                 +           0              -             0                +

Variations de [tex]f[/tex]              [tex]$\nearrow[/tex]         1,66           [tex]$\searrow[/tex]         -2,24            [tex]$\nearrow[/tex]

2)a)

Cherchons une équation de la tangente [tex]\mathcal{T}[/tex] à [tex]\mathcal{C}_{f}[/tex] au point A d'abscisse 0.

On a :

  • [tex]f(x)=(x^{2} -2,5x+1)e^{x}[/tex]
  • [tex]f'(x)=(x^{2} -0,5x-1,5)e^{x}[/tex]

Donc :

[tex]f(0)=(0^{2}-2,5\times 0+1)e^{0}=1\times1=1[/tex]

[tex]f'(0)=(0^{2}-0,5\times 0-1,5)e^{0}=-1,5\times 1=-1,5[/tex]

Donc l'équation de la tangente [tex]\mathcal{T}[/tex] à [tex]\mathcal{C}_{f}[/tex] au point A d'abscisse 0 est :

[tex]y=f'(0)(x-0)+f(0)\\y=-1,5(x-0)+1\\y=-1,5x+1[/tex]

b)

A l'aide de la calcultrice, on trouve que l'abscisse [tex]a[/tex] du point [tex]P[/tex] est comprise entre [tex][1,7;1,8][/tex].

Prends tranquillement le temps de relire ma réponse : tu peux en effet adapter la rédaction.

En espérant t'avoir aidé.

View image OzYta
Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. FRstudy.me s'engage à répondre à toutes vos questions. Merci et revenez souvent pour des réponses actualisées.