👤

FRstudy.me offre une solution complète pour toutes vos questions. Obtenez des réponses rapides et précises à vos questions grâce à notre communauté d'experts bien informés.

Bonjour, pouvez vous m aider s’il vous plait ?

Bonjour Pouvez Vous M Aider Sil Vous Plait class=

Sagot :

Explications étape par étape:

on a. f(a) - f(b) = - a² + 10a +11 + b² - 10b -11

= (b-a)(b+a) +10(a-b)

=10(a-b) - (a-b)(a+b)

=(a-b) (10-a-b)

alors. f(a) -f(b) / a-b = 10 - ( a+b)

on a 0≤ a <5. et 0<b≤5

donc. 0<a+b<10

alors. -10< -(a+b) < 0

d'oĂą. 0 <10 -(a+b) <10

c.Ă .d. f est positive sur [0;5]

on déduit. f est croissante sur [0;5]

Réponse :

Explications étape par étape :

Bonsoir

f(a) - f(b)  = ( -a² +10a + 11)  - (-b² + 10b +11)

f(a) - f(b) = -a² + 10a + 11 + b² - 10b - 11

f(a) - f(b) = - (a - b) (a + b) + 10( a - b)

f(a) - f(b) = (a-b) (-a -b + 10)

[f(a) - f(b) ] / (a - b) = -a - b + 10

1) 0 < a < 5 et 0 <  b < 5

   -5 < -a < 0 et -5 < -b < 0

On additionne

-10 < -a - b <= 0

On ajoute 10

0 < [f(a) - f(b) ] / (a - b) < 10

donc  [f(a) - f(b) ] / (a - b) > 0

on a donc a< b  soit a-b < 0 et donc alors f(a) - f(b) < 0 soit f(a) < f(b)

f est croissante sur [ 0 ; 5 ]

2) 5<= a < 10 et 5< b < 10

   -10 < -a <= -5 et -10 < -b <- 5

On additionne

-20 < -a - b <=- 10

On ajoute 10

-10 < [f(a) - f(b) ] / (a - b) <0

donc  [f(a) - f(b) ] / (a - b) < 0

on a donc a< b  soit a-b < 0 et donc alors f(a) - f(b) > 0 soit f(a) > f(b)

f est décroissante sur [ 5 ; 10 ]

Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Vous avez trouvé vos réponses sur FRstudy.me? Revenez pour encore plus de solutions et d'informations fiables.