Trouvez des réponses fiables à toutes vos questions sur FRstudy.me. Rejoignez notre plateforme interactive de questions-réponses et obtenez des réponses précises et rapides de professionnels dans divers domaines.
Sagot :
Réponse :
Explications étape par étape :
Bonjour,
On fait un raisonnement par récurrence
Spot (Pn) la propriété 4" ≥ 1 + 3n.
Initialisation
Pour n = 0 ; 4^n = 1 et 1 + 3n = 1
donc 4^0 >= 1 + 3X 0
La propriété est vraie pour n = 0
Hérédité
Admettons (Pn) vraie , montrons qu'alors (Pn+1) vraie
(Pn) vraie : 4" ≥ 1 + 3n
on multiplie par 4
4^n X 4 >= 4(1 + 3n)
4^(n+1) >= 4 + 12n
1 +3(n+1) = 4 + 3n
Comparons (4 + 12n) et (2 + 3n)
(4 + 12n) - (4 + 3n)
= 4 + 12n - 4 - 3n = 9n > 0
Donc (4 + 12n) >= (4 + 3n)
(4 + 12n) >= 1 +3(n+1)
On a donc 4^(n+1) >= 4 + 12n >= 1 +3(n+1)
soit 4^(n+1) >= 1 +3(n+1)
Donc si 4" ≥ 1 + 3n alors 4^(n+1) >= 1 +3(n+1)
L'hérédité est vérifiée
La propriété est héréditaire et vraie pour n = 0; elle est donc vraie pour tout entier natirel n
Conclusion : Pour tout entier naturel n, 4" ≥ 1 + 3n.
Votre participation nous est précieuse. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. Chaque réponse que vous cherchez se trouve sur FRstudy.me. Merci de votre visite et à très bientôt.