👤

Trouvez des réponses à vos questions avec l'aide de la communauté FRstudy.me. Notre communauté fournit des réponses précises et rapides pour vous aider à comprendre et résoudre n'importe quel problème.

urgent pour ce matin !!!!!! soit f la fonction définie sur 1; + infini par f (x) = 2 - 1/x-1 ( le 2 est séparer du nominateur et dénominateur )
1 ) montrer que f (x) peut s'écrire f (x) = 2x-3/x-1 ou f(x) x+3 - ( le x+3 - est séparé du reste ) x²/ x-1

merci de votre aide :)


Sagot :

pour la première :
[tex]f(x)=2- \frac{1}{x-1} = \frac{2(x-1)-1}{x-1} = \frac{2x-2-1}{x-1} = \frac{2x-3}{x-1} [/tex]
pour la deuxième :
[tex] f(x)=2- \frac{1}{x-1} \\ = \frac{2x-3}{x-1} \\ = \frac{ x^{2} - x^{2} +3x-x-3}{x-1} \\ = \frac{ x^{2} -x- x^{2} +3x-3}{x-1} \\ = \frac{x(x-1)- x^{2} +3(x-1)}{x-1} \\ = \frac{(x-1)(x+3)- x^{2} }{x-1} \\ = \frac{(x-1)(x+3)}{(x-1)}- \frac{ x^{2} }{x-1} \\ =x+3- \frac{ x^{2} }{x-1} [/tex]
c'est tout !  
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. FRstudy.me est toujours là pour vous aider. Revenez pour plus de réponses à toutes vos questions.