👤

FRstudy.me: votre destination pour des réponses précises et fiables. Posez vos questions et recevez des réponses fiables et détaillées de la part de notre communauté d'experts dévoués.

une entreprise fabrique chaque semaine x kilogrammes d'un produit P destiné à l'industrie pharmaceutique ( [tex](0 \leq x \leq 45)[/tex]. 

le coût unitaire de production ,en euros est modélisé par la fonction f définie sur [ 0:45] par F(x)= x² - 50x + 700.

1) déterminer le coût unitaire de production d'un kilogramme de produit P lorsque l'entreprise en a fabriqué 40 kg.

2) En déduire graphiquement la quantité de produit pour laquelle le coût unitaire de production est inférieur ou égal à 100 €.

3) Chaque kilogramme du produit est vendu 988€. 

a) montrer que le coût total de production est modélisé par la fonction c définie sur [0;45] par c(x) = x(cube) - 50x² +700x.

b) en déduire le bénéfice b(x) réalisé par l'entreprise pour x kilogrammes du produit fabriqué et vendu.

c) calculer b' (x) puis étudier son signe. En déduire le sens de variation de la fonction b et dresser son tableau de variation.

d) A partir de quelle quantité de produit vendu le bénéfice baisse -t-il ? 



Sagot :

F(40) = 1600-2000+700=300

 

x²-50x+700<100 pour x entre 20 et 30

 

c(x) c'est bien sur x*f(x) donc x^3-50x²+700x

 

b(x) vaut 988x-c(x) soit -x^3+50x²+288x

b'(x)=-3x²+100x+288  delta = 10000+12*288=116² donc racines (-100-116)/-6 ou 36 et (-100+116)/-6 ou -8/3

b' est positive sur 0,36 et négative ensuite

b est donc croissante sur 0,36 et decroissante ensuite