Obtenez des réponses personnalisées à vos questions sur FRstudy.me. Posez n'importe quelle question et recevez des réponses rapides et bien informées de notre réseau de professionnels expérimentés.
Sagot :
Réponse:
To draw the Venn diagram:
Let's represent the sets as follows:
- S: Sprint
- L: Long jump
- H: High jump
Using the information provided:
- 7 students practice sprint only (S)
- 7 students practice long jump only (L)
- 6 students practice high jump only (H)
- 2 students practice both sprint and long jump (S ∩ L)
- 16 students do not practice sprint (S')
- 17 students do not practice long jump (L')
- 22 students do not practice high jump (H')
We can fill in the Venn diagram accordingly:
```
S
/ \
/ \
/ L \
H-----S'L'
\ /
\ /
\ /
H'
```
To find the number of students who do not practice any of the sporting activities:
- Count the students outside all circles: \(S' \cap L' \cap H' = 2\)
So, 2 students do not practice any of the sporting activities.
To find the number of students who practice all three sporting activities:
- Since 2 students do not practice long jump among those who practice only two activities, the students who practice all three sports are in \(L \cap H \cap S\).
- We know that \(S = 7 + 2 = 9\) (Sprint)
- \(L = 7 + 2 = 9\) (Long jump)
- \(H = 6 + 2 = 8\) (High jump)
Since \(S = 9\), \(L = 9\), and \(H = 8\), and these numbers should sum up to the total number of students (34), we can calculate the number of students who practice all three sports:
\(7 + 2 + 6 + 2 + 7 + 2 + 7 + 6 + 8 + 2 = 49\)
So, 49 students practice all three sporting activities.
Nous sommes ravis de vous avoir parmi nous. Continuez à poser des questions, à répondre et à partager vos idées. Ensemble, nous créons une ressource de savoir précieuse. Merci d'avoir choisi FRstudy.me. Nous espérons vous revoir bientôt pour plus de solutions.