FRstudy.me offre une plateforme conviviale pour trouver et partager des connaissances. Posez vos questions et recevez des réponses rapides et précises de la part de notre communauté d'experts expérimentés.
Sagot :
1.Pour avoir le PGCD (1394; 255) j'utilise l'algorithme des soustractions succesives : 1394-255= 1139 , donc PGCD (1394; 255) , PGCD (1139 ; 255) 1139-255=884 , donc PGCD ( 1139; 255 ) , PGCD ( 884 ; 255 ) 884-255=629 , donc PGCD ( 884 ; 255 ) , PGCD ( 629 ; 255) 629-255=374 , donc PGCD ( 629 ; 255) , PGCD (374 ; 255) 374-255=119 , donc PGCD ( 374 ; 255 ) , PGCD ( 255 ; 119 ) 255- 119= 136 , donc PGCD (255 ; 119 ) , PGCD (136 ; 119 ) 136-119= 17 , donc PGCD ( 136 ; 119 ) , PGCD ( 119 ; 17 ) 17 est un multiple de 119 . Donc PGCD ( 1394 ; 255 )= 17 2.a. Comme le PGCD (1394 ; 255 )= 17 , alors il peut faire 17 colliers . b. 1394 ÷ 17 = 82 ; 255 ÷ 17 = 15 . Donc il y a 82 graines d'acai et 15 graines de palmier pêche .
Bonjour,
PGCD (1384 ; 255) selon la méthode d'Euclide :
1394 : 255 = 5 x 255 + 119
255 : 119 = 2 x 119 + 17
Le PGCD est égal au dernier reste non nul : 17
PGCD (1384 ; 255) selon la méthode d'Euclide :
1394 : 255 = 5 x 255 + 119
255 : 119 = 2 x 119 + 17
Le PGCD est égal au dernier reste non nul : 17
Nous valorisons votre présence ici. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Merci de visiter FRstudy.me. Revenez bientôt pour découvrir encore plus de réponses à toutes vos questions.