👤

Connectez-vous avec des experts et des passionnés sur FRstudy.me. Posez n'importe quelle question et obtenez une réponse complète et précise de la part de notre communauté de professionnels expérimentés.

En 2134, un historien retrouve la copie d'un élève de 5e mais le temps a détérioré le papier et il ne reste que quelques indices .

Sur cette copie, l'historien découvre un mystérieux nombre "a égal à b fois (c+d)" . Plus loin dans la copie, il est écrit "b fois d = 56" et "le prodit de b par c est égal à 31,5".

Aide l'historien à découvrir combien vaut ce mystérieux nombre a .



Sagot :

Tommus

Proposition à vérifier : b(c+d) vaut bxc+bxd donc 31.5+56 et donc a=87.5.

a =b(c+d) plus loin il est écrit b X d = 56 et le produit de b par c= 31,5 

----------------------------------------------------------------------------------------------------------------------------------

on cherche la valeur de a.

puisque b multiplié par d = 56 et b multiplié par c = 31,5

puisque a est = b multiplié (c+d)

                 a =  pour moi bd = 56 + bc soit 31,5 = 87,5

donc a = 87,5