👤

Participez aux discussions sur FRstudy.me et obtenez des réponses pertinentes. Posez n'importe quelle question et obtenez une réponse complète et précise de la part de notre communauté de professionnels expérimentés.

Soit la fonction f définie par f(x) =(x-1)e[x/(x-1)]

Etudier la variation de f ainsi que les limites aux bornes de l'ensemble de définition.

Précise si on peut prolonger f par continuité en x=1

Monter que f(x)-e(x) tend vers 0 quand x tend vers + ou - infini

( On écrira f(x)=ex(....)-e[x/(x-1)] et utiliser un équivalent pour trouver la limite du premier terme)

Que peut on en déduire pour le fraphique de f ?

Tracer le graphique de f



Sagot :

Soit la fonction f définie par f(x) =(x-1)e[x/(x-1)]

1) Étudier la variation de f ainsi que les limites aux bornes de l'ensemble de définition.
f'(x)=e(x/(x-1))+(x-1)*(-1/(x-1)²)e(x/(x-1))
     =e(x/(x-1))[1-1/(x-1)]
     =e(x/(x-1))*((x-2)/(x-1))

f'(x) est du signe de (x-2)/(x-1)
donc f est croissante sur ]-inf;1[
f est décroissante sur ]1;2]
f est croissante sur [2;+inf[

2) Préciser si on peut prolonger f par continuité en x=1
f(x)=(x-1)e(x/(x-1))
     =(x-1)e(1+1/(x-1))
     =e(1+1/(x-1))/(1/(x-1))
on pose X=1/(x-1)
f(x)=e(1+X)/X=g(X)
si x tend vers 1- alors X tend vers -inf
alors g(X) tend vers 0
si x tend vers 1+ alors X tend vers +inf
alors g(X) tend vers +inf
ainsi la limite à gauche et à droite de f en 1 diffère
donc on ne peut pas prolonger f en x=1 par continuité

3) Montrer que f(x)-e(x) tend vers 0 quand x tend vers + ou - infini
f(x)-e(x)=(x-1)e(x/(x-1))-e(x)
un équivalent au voisinage de inf est :
f(x) -e(x) ~ (x-1)e-e(x)

Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. Faites de FRstudy.me votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.