👤

FRstudy.me: où vos questions rencontrent des réponses expertes. Posez vos questions et obtenez des réponses détaillées et fiables de notre communauté d'experts expérimentés.

Bonjour..
J’ai un DM en maths concernant les suites
Il s’agit ici de là démonstration par récurrence
Je bloque pour l’exercice 1 notamment pour l’hérédité !

Hérédité : Supposons pour n appartenant à N fixe que Sn est vraie i.e.
1^3 + 3^3 + 5^3 +...+ (2n - 1)^3 = n^2(2n^2 -1)

Démontrons alors que Sn+1 est vraie i.e.
1^3 + 3^3 + 5^3 +...+ (2n - 1)^3 + (2(n+1)-1)^3 = (n+1)^2(2(n+1)^2 -1)

Sn+1= n^2(2n^2-1) +(2(n+1)-1)^3

Voilà je reste bloquer à cette étape
J’ai demandé de l’aide à mon professeur il m’a conseillé de développer «n^2(2n^2-1) +(2(n+1)-1)^3 = (n+1)^2(2(n+1)^2 -1) »
des deux côtés afin de trouver la même chose
Mais je comprend pas comment procéder
Merci de bien vouloir m’aider


Bonjour Jai Un DM En Maths Concernant Les Suites Il Sagit Ici De Là Démonstration Par Récurrence Je Bloque Pour Lexercice 1 Notamment Pour Lhérédité Hérédité Su class=

Sagot :

Caylus

Bonjour,

[tex]S_n\ est\ vraie\ pour\ n=1\\S_1=1^3=1=1^2(2*1^2-1)=1*1=1\\\\ On\ suppose\ S_n=n^2(2n^2-1)\ est\ vraie\\[/tex]


[tex]\begin{array}{rcl} S_{n+1}&=&S_n+(2(n+1)-1)^3\\ &=&n^2(2n^2-1)+(2n+1)^3\\ &=&2n^4-n^2+(2n)^3+3*(2n)^2*1+3*2n*1^2+1^3\\ &=&2n^4+8n^3+11n^2+6n+1\\\end{array}\\[/tex]


[tex]Soit\ P(n)=2n^4+8n^3+11n^2+6n+1\\ P(-1)=2-8+11-6+1=0\\ P(n)\ est\ donc\ divisible\ par\ (n+1)\\[/tex]


[tex]\begin{array}{c|c|c|c|c|c|} &n^4&n^3&n^2&n&1\\ &2&8&11&6&1\\ n=-1&&-2&-6&-5&-1\\ &2&6&5&1&0\\ x=-1&&-2&-4&-1&\\ &2&4&1&0&\\ \end{array}\\\\[/tex]

[tex]\begin{array}{rl} S_{n+1}=&(n+1)(2n^3+6n^2+5n+1)\\\\ =&(n+1)^2(2n^2+4n+1)\\\\ =&(n+1)^2(2(n^2+2n+1-1)+1)\\\\ =&(n+1)^2(2(n+1)^2-1) \end{array}[/tex]


Nous apprécions chaque contribution que vous faites. Revenez souvent pour poser de nouvelles questions et découvrir de nouvelles réponses. Ensemble, nous construisons une communauté de savoir. Vous avez des questions? FRstudy.me a les réponses. Revenez souvent pour rester informé.