👤

FRstudy.me vous connecte avec des experts prêts à répondre à vos questions. Rejoignez notre plateforme de questions-réponses pour recevoir des réponses rapides et précises de la part de professionnels expérimentés dans divers domaines.

Exercise 01:

The heat of dissociation per mole of a gaseous water at 18∘C and 1 atm is 241750 J, calculate its

value at 68∘C. Data given are:



(2O) = 33.56;

(2

) = 28.83;

(2

) = 29.12 JK−1 mol−1

The dissociation reaction is:

H2O() → H2

() +

1

2

O2

() Δ



(291 K) = 241750 J​


Sagot :

To calculate the heat of dissociation (\( \Delta H^\circ \)) of gaseous water at 68°C using the provided data, we can use the equation:

\[

\Delta H_{\text{dissociation}}^\circ(T_2) = \Delta H_{\text{dissociation}}^\circ(T_1) + \int_{T_1}^{T_2} C_p \, dT

\]

Where:

- \( \Delta H_{\text{dissociation}}^\circ(T_2) \) is the heat of dissociation at the final temperature (68°C).

- \( \Delta H_{\text{dissociation}}^\circ(T_1) \) is the heat of dissociation at the initial temperature (18°C).

- \( C_p \) is the molar heat capacity of gaseous water at constant pressure.

Given:

- \( \Delta H_{\text{dissociation}}^\circ(291\, \text{K}) = 241750\, \text{J} \)

- \( C_{p(\text{H}_2\text{O})} = 33.56\, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \)

- \( C_{p(\text{H}_2)} = 28.83\, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \)

- \( C_{p(\text{O}_2)} = 29.12\, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \)

We need to integrate the heat capacity (\( C_p \)) of water with respect to temperature (\( T \)) from 18°C to 68°C and add it to the initial heat of dissociation.

Let's calculate:

\[

\Delta H_{\text{dissociation}}^\circ(68^\circ\text{C}) = \Delta H_{\text{dissociation}}^\circ(291\, \text{K}) + \int_{291\, \text{K}}^{T_2} C_{p(\text{H}_2\text{O})} \, dT

\]

First, let's convert 68°C to Kelvin:

\[

T_2 = 68^\circ\text{C} + 273.15 = 341.15\, \text{K}

\]

Now, let's perform the integration:

\[

\Delta H_{\text{dissociation}}^\circ(68^\circ\text{C}) = 241750\, \text{J} + \int_{291\, \text{K}}^{341.15\, \text{K}} 33.56\, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \, dT

\]

\[

\Delta H_{\text{dissociation}}^\circ(68^\circ\text{C}) = 241750\, \text{J} + 33.56\, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot (341.15\, \text{K} - 291\, \text{K})

\]

\[

\Delta H_{\text{dissociation}}^\circ(68^\circ\text{C}) = 241750\, \text{J} + 33.56\, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot 50.15\, \text{K}

\]

\[

\Delta H_{\text{dissociation}}^\circ(68^\circ\text{C}) \approx 241750\, \text{J} + 1685.524\, \text{J/mol}

\]

\[

\Delta H_{\text{dissociation}}^\circ(68^\circ\text{C}) \approx 243435.524\, \text{J/mol}

\]

So, the heat of dissociation of gaseous water at 68°C is approximately \( 243435.524\, \text{J/mol} \).