Bienvenue sur FRstudy.me, votre plateforme de référence pour toutes vos questions! Rejoignez notre plateforme pour recevoir des réponses rapides et précises de la part de professionnels expérimentés dans divers domaines.
Sagot :
Diminuer de 1% revient à multiplier par 0,99
1)
U1 (1er coup de marteau) sera égal à 0,99 fois l'épaisseur précédente ( U0)
[tex]U_1=0,99\times U_0=0,99\times 1=0,99\\ U_2=0,99\times U_1=0,99\times 0,99=0,9801[/tex]
2)
On a la relation de récurrence suivante :
[tex] \left \{ {{U_{n+1}=0,99U_n} \atop {U_0=1 \ \ \ \ \ \ \ \ \ \ } \right. [/tex]
3)
je ne sais pas comment tu fais d'habitude ... le résoudre par le calcul n'est pas faisable à ton niveau...
Méthode 1 : Avec un algorithme
Variables : e (épaisseur), n (compte le nombre de coup)
Traitement :
affecter à e la valeur 1
affecter à n la valeur 0
Tant Que t > 0,5
Faire
affecter à t la valeur 0,99t
affecter à n la valeur n+1
Fin Tant Que
Sortie : afficher n
Méthode 2 : avec un tableur (fichier joint)
4)
[tex] \frac{U_{n+1}}{Un}= \frac{0,99U_n}{U_n}=0,99 [/tex]
la raison vaut 0,99
1)
U1 (1er coup de marteau) sera égal à 0,99 fois l'épaisseur précédente ( U0)
[tex]U_1=0,99\times U_0=0,99\times 1=0,99\\ U_2=0,99\times U_1=0,99\times 0,99=0,9801[/tex]
2)
On a la relation de récurrence suivante :
[tex] \left \{ {{U_{n+1}=0,99U_n} \atop {U_0=1 \ \ \ \ \ \ \ \ \ \ } \right. [/tex]
3)
je ne sais pas comment tu fais d'habitude ... le résoudre par le calcul n'est pas faisable à ton niveau...
Méthode 1 : Avec un algorithme
Variables : e (épaisseur), n (compte le nombre de coup)
Traitement :
affecter à e la valeur 1
affecter à n la valeur 0
Tant Que t > 0,5
Faire
affecter à t la valeur 0,99t
affecter à n la valeur n+1
Fin Tant Que
Sortie : afficher n
Méthode 2 : avec un tableur (fichier joint)
4)
[tex] \frac{U_{n+1}}{Un}= \frac{0,99U_n}{U_n}=0,99 [/tex]
la raison vaut 0,99
Coucou,
Chaque coup diminue l'épaisseur précédente de 1% donc chaque Un est égal à l'Un précédent - 1% de cet Un précédent
donc de manière générale , U(n+1)=Un-(1/100)Un=0.99Un
U(n+1)=0.99Un indique que Un est une suite géométrique de raison 0.99 et de 1er terme U0=1
donc cette suite s'écrit : Un=U0.q^n
=1.(0.99)^n
=(0.99)^n
On veut Un=0,5 imposé par l'énoncé
donc on cherche à résoudre l'équation : 0,5=(0,99)^n
En 1ère , effectivement , on ne peut pas faire autre chose que de prendre sa calculatrice et d'y aller à tâtons en sachant que n est tout de même égal à quelques dizaines de fois au moins!!!!!
Je trouve (0.99)^69 = 0.499
Donc je suis allée trop loin , j'ai trop tapé!!!!
Je reste donc sur n=68
En effet (0.99)^67=0.5099
(0.99)^68=0.5048
(0.99)^69=0.499
Donc je dirais qu'il doit taper au moins 67 fois , au plus 68 fois!!!!!
Voilà , j'espère que ma réponse saura te satisfaire Jobdt !!!!!!
Chaque coup diminue l'épaisseur précédente de 1% donc chaque Un est égal à l'Un précédent - 1% de cet Un précédent
donc de manière générale , U(n+1)=Un-(1/100)Un=0.99Un
U(n+1)=0.99Un indique que Un est une suite géométrique de raison 0.99 et de 1er terme U0=1
donc cette suite s'écrit : Un=U0.q^n
=1.(0.99)^n
=(0.99)^n
On veut Un=0,5 imposé par l'énoncé
donc on cherche à résoudre l'équation : 0,5=(0,99)^n
En 1ère , effectivement , on ne peut pas faire autre chose que de prendre sa calculatrice et d'y aller à tâtons en sachant que n est tout de même égal à quelques dizaines de fois au moins!!!!!
Je trouve (0.99)^69 = 0.499
Donc je suis allée trop loin , j'ai trop tapé!!!!
Je reste donc sur n=68
En effet (0.99)^67=0.5099
(0.99)^68=0.5048
(0.99)^69=0.499
Donc je dirais qu'il doit taper au moins 67 fois , au plus 68 fois!!!!!
Voilà , j'espère que ma réponse saura te satisfaire Jobdt !!!!!!
Merci d'utiliser cette plateforme pour partager et apprendre. Continuez à poser des questions et à répondre. Nous apprécions chaque contribution que vous faites. FRstudy.me est toujours là pour vous aider. Revenez souvent pour plus de réponses à toutes vos questions.