👤

Découvrez une mine d'informations et obtenez des réponses sur FRstudy.me. Rejoignez notre communauté de connaisseurs pour accéder à des réponses complètes et fiables sur n'importe quel sujet.

C est un cercle de diamètre [AB] et de centre O. M est un point de C distinct de A et de B. Le point R appartient au segment [OA]. La perpendiculaire à (AB) passant par R coupe la droite (AM) en P et la droite (BM) en Q. Montrer que le point I d'intersection des droites (BP) et (AQ) appartient au cercle C .



Sagot :

AMB est rectangle en M ; (QR) est perpendicualire à (AB)

donc (QR) et (AM) représente 2 hauteurs du triangle AQB

les 3 hauteurs de ce triangle se rencontrent en l'orthocentre H.

(BH) est perpendiculaire à (AQ) au point I donc (BI) est perpendiculaire à (AQ)

ainsi (BI) est aussi perpendiculaire à (AQ) puisqu'alors (BI) représente la 3ème hauteur du triangle AQB.

 

Par conséquent, AIB est rectangle en I

d'après la réciproque du théorème de l'angle circonscit, I appartient au cercle de daimètre [AB]

soit encore : I appartient au cercle (C)

Votre participation est très importante pour nous. Continuez à partager des informations et des solutions. Cette communauté se développe grâce aux contributions incroyables de membres comme vous. FRstudy.me s'engage à répondre à toutes vos questions. Merci de votre visite et à bientôt pour plus de réponses.