👤

Trouvez des réponses à vos questions les plus pressantes sur FRstudy.me. Découvrez des réponses complètes de la part de membres connaisseurs de notre communauté, couvrant un large éventail de sujets pour répondre à tous vos besoins d'information.

Bonjour, J’ai un dm en mathématiques et je bloque, est-ce que je pourrais avoir de l’aide? Merci d’avance

Soit f(x) = ax(carré)+ bx + c un polynôme du second degré
admettant deux racines x1 et x2

1. Démontrer que x1+ x2=-b/2a
Et x1x2=c/a

2. Dire pour chaque affirmation si elle est vraie ou fausse et justifier la réponse.

a. Si b = 0, alors l'équation f(x)=0 admet deux solu-
tions opposées.

b. Si a=c, alors l'équation f(x)=0 admet deux solutions
inverses l'une de l'autre.


Sagot :

Bonjour,

[tex]f : x \in \mathbb{R} \mapsto ax^2+bx+c[/tex]

Pour que la suite ait un sens, il faut supposer [tex]a \not =0[/tex], ce qui est implicite dans l'énoncé car sinon f ne serait pas un polynôme de degré 2, mais de degré 1 (voire moins).

1) Puisque le polynôme admet deux racines, son discriminant vérifie [tex]\Delta \ge 0[/tex].

On a alors (c'est encore vrai si [tex]x_1=x_2[/tex]) :

[tex]x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a} \Rightarrow x_1+x_2=\dfrac{-b-\sqrt{\Delta}}{2a} +\dfrac{-b+\sqrt{\Delta}}{2a} =\dfrac{-2b}{2a}=\dfrac{-b}{a}[/tex].

Ainsi (l'énoncé est faux, ça se voit sur un exemple) :

[tex]\boxed{x_1+x_2=\dfrac{-b}{a}}[/tex].

De même pour le produit :

[tex]x_1x_2=\dfrac{-b-\sqrt{\Delta}}{2a} \times \dfrac{-b+\sqrt{\Delta}}{2a} =\dfrac{(-b)^2-(\sqrt\Delta)^2}{4a^2}=\dfrac{b^2-\Delta}{4a^2}[/tex].

Or : [tex]\Delta=b^2-4ac[/tex] , donc  [tex]b^2-\Delta=4ac[/tex] et donc :

[tex]x_1_1=\dfrac{4ac}{4a^2} \Rightarrow \boxed{x_1x_2=\dfrac{c}{a}}[/tex].

2)a) Vraie.

Il suffit d'utiliser la formule sur la somme :

[tex]x_1+x_2=\dfrac{-b}{a}=0 \Rightarrow \boxed{x_1=-x_2}[/tex].

b) Vraie.

Essayons la formule sur le produit :

[tex]x_1x_2=\dfrac{c}{a}=1 \overset{?}{\Rightarrow}x_1=\dfrac{1}{x_2}[/tex].

Attention à l'implication surmontée de ? : elle peut être fausse si [tex]x_1[/tex] et/ou [tex]x_2[/tex] est nul !

Cependant, il existe une solution nulle ssi [tex]c=0[/tex], ce qui impliquerait [tex]a=0[/tex], car [tex]a=c[/tex], possibilité qu'on a exclue dès le départ pour que f soit bien du second degré...

Voilà. N'hésite pas à demander des précisions.

Votre présence ici est très importante. Continuez à partager vos connaissances et à aider les autres à trouver les réponses dont ils ont besoin. Cette communauté est l'endroit parfait pour apprendre ensemble. Faites de FRstudy.me votre ressource principale pour des réponses fiables. Nous vous attendons pour plus de solutions.